
1

Development of an MM5-Based Four-
Dimension Variational Analysis System

for Distributed Memory Computers

Frank H. Ruggiero

Space Vehicles Directorate

Air Force Research Laboratory

Hanscom AFB, MA

2

Background

Objective:

Take state-of-the-art weather analysis system and
make it scalable for distributed memory multi-
processor machines

Goal:

To bring mesoscale Four-Dimensional Variational
Analysis (4DVAR) into the realm of operational
forecasting

3

Support

Supported by DoD High Performance Computing
and Modernization Office (HPCMO)

– Common High Performance Computing
Software Support Initiative (CHSSI), project
CWO-5

– 3 year effort, started February 2000

4

Participants

AFRL: Program Management

– Frank Ruggiero

AER: Code Development

– Thomas Nehrkorn

– George Modica

– Mark Cerniglia

ANL: Parallel Implementation

– John Michalakes

FSU: Physics Development,
Test Data

– Xiaolei Zou

5

4D Data Assimilation vs 4DVAR

time

Conventional
Initial Conditions

ICs

data
model
opt. ICs

X

6

4D Data Assimilation vs 4DVAR

time

Conventional
Initial Conditions

ICs

X

time

Optimized Initial
Conditions

4DVAR

data
model
opt. ICs

X

time

7

MM5 4DVAR

Serial Version of mesoscale 4DVAR exists

Based on Fifth Generation NCAR/PSU Mesoscale
Model, Version 1 (MM5v1)

Developed by Xiaolei Zou at NCAR and released
in 1997

Original CWO-5 plan was to make this 4DVAR
version scalable

8

Migration to MM5v3

CWO-5 migrated from MM5v1 to MM5v3 (v3.3) in Oct
‘00

– facilitate implementation of parallel strategy

• save development time and effort

• increase potential speedup factor

– sync 4DVAR system with newest forecast
model

• greater community acceptance

9

MM5 4DVAR System

NLM provides full
physics model

trajectory

Baseline code is
composed of 5

CSCIs

Tangent
Linear Model

(TLM)

Tangent
Linear Model

(TLM)

Nonlinear
Forecast
Model *
(NLM)

Nonlinear
Forecast
Model *
(NLM)

Adjoint
Model
(ADJ)

Adjoint
Model
(ADJ)

Sat Data
Ingest/QC

Sat Data
Ingest/QC

TLM “predicts”
state of

observation vector

Adjoint model
measures misfit

between predicted
and actual obs Non-development Item (NDI)

Designed/developed in CWO-5

Gradient
Solver

Gradient
Solver

Generated from NLM by TAMC

* NLM can differ from TLM, ADJ!

Loop for incremental driver

10

The Tangent-Linear and Adjoint
Model Compiler (TAMC)

TAMC is a source-to-source translator that
generates Fortran code for the TLM or ADJ from
the NLM code

– TAMC can be used remotely for
noncommercial use, free of charge
http://puddle.mit.edu/~ralf/tamc

– supports almost the full FORTRAN-77 standard
and most Fortran-90 extensions to FORTRAN-
77

11

The Tangent-Linear and Adjoint
Model Compiler (TAMC)

Could incorporate TAMC as part of a pre-
compilation process

– would make for truly “same source” 4DVAR
system

• need maintain NLM only

We use TAMC as a development tool only

– separately maintain TLM and ADJ

• minimizes required changes to NCAR-
supported MM5 code

12

TLM, ADJ Code Generation and Test
Procedure

 v3 NLM
module

run CPP

TAMC

manual
changes

4DVAR
module

 v3 NLM
module

4DVAR
module

4DVAR
modules

unit
integration

test

unit test

 MM5v3
NLM

 MM5v3
NLM

edit
non-f77

 MM5v3
TLM, ADJ

 MM5v3
TLM, ADJ

13

Unit and Unit Integration Testing
Requirements

TLM

[]
0lim1

),(
)()(→=−+

X
XX

XXX δ
δδ

δ
J

JJ

ADJ

xyxy ,*, LL =

Where

J(X), J(X+ δX) are cost
functions from NLM

δJ(X, δX) is from TLM

Where

x is TLM input

y = L(x) is TLM output

L, L* are TLM, ADJ

14

Serial version of MM5v3.3 TLM completed in
December 2000

Migrated TLM to MM5v3.4 in Dec ‘00
– good test of our code generation/maintenance procedures

– v3.4 code generation and testing (TLM only) accomplished in
less than one week!

Parallel Version of TLM completed in March ‘01

Serial version of Adjoint model:

Coding - 100% complete

Unit testing - 90% complete

TLM and Adjoint Development Status

15

2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

Parallelization of MM5 TLM

Follows procedure developed
for MM5v3 NLM

– 2-D horizontal data
decomposition

16

2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

Parallelization of MM5 TLM

Follows procedure developed
for MM5v3 NLM

– 2-D horizontal data
decomposition

– Communication of
lateral boundary
conditions between
processors

– Implementation straight
forward since data
dependencies are
similar in NLM and TLM

17

RSL - Parallel run-time system library

– Interface with MPI, provides high-level stencil and inter-domain
exchange, irregular domain decomposition, automatic
local/global index translation, and distributed I/O.

FLIC - Fortran loop and index converter

– Parser-based source translation tool that automates the
conversion of program loops and array indices for distributed-
memory parallel computers.

– Utilizes RSL-provided loop ranges.

Distributed Memory (DM)-specific code fragments

DM-specific subroutines

DM-related files

– Includes makefiles, tables, misc files used to install,
preprocess, compile, and link code in DM-parallel mode.

Same-Source Parallel
Implementation

18

4DVAR Baseline and MPP Directory
Build Structure

MM5/

pick

MPP

include

fdda

dynamics

domain

memory

Template physics

ADJ

TLM

Util

19

4DVAR Baseline and MPP Directory
Build Structure

MM5/

pick

MPP

include

fdda

dynamics

domain

memory

FLIC
RSL
build

FLIC

Parser

Scanner

bin

h

RSL
parallel-src

Template physics

ADJ

TLM

Util

20

TLM Scaling Performance

0

1

2

3

4

5

6

7

1 4 16 32 64

Number of Processors

se
c/

ti
m

e
st

ep

Actual
Optimum

21

TLM Multiprocessor, Cross-Platform
Correctness Performance

Obtained bit-for-bit agreement (real*8) between 1-
processor, 4-processor parallel, and serial runs of
TLM

– meets final project objective

Obtained 14-digit agreement between above runs on
SGI Origin, ASC IBM SP3, and DEC Alpha
Workstation cluster

– meets final project objective

22

Parallelization of MM5 Adjoint

2-D horizontal data decomposition

Communication for horizontal dependencies

– Analysis of dependencies in Adjoint

• Significantly different from NLM and TLM

– Some restructuring of data (3D tend arrays)

– Implemented with RSL and FLIC

Distributed I/O

– Model input and output (similar to NLM)

– Scratch I/O for trajectories

23

Complete Adjoint model testing

Code incremental driver

Complete Adjoint model parallel code implementation

Prepare satellite observation operators

Assemble satellite data preprocessor

β-Test

– emulate AFWA computing environment

• IBM SP3 computer (either at ASC or NAVO)

• operational dataset as input (from CRDA)

– compare forecast, timing metrics with AFWA-MM5
forecast

Remaining Tasks

24

Summary

CWO-5 will produce MM5 4DVAR code for DM MPP

– based on current MM5 release

– Alpha version available Fall 2001

– Beta version available Fall 2002

– Project completion Feb 2003

CWO-5 development team has put considerable effort into
ensuring

– risks are minimized for successful operational
implementation

– product will be well tested and of high quality

– a robust update migration path exists

